Kamis, 21 Februari 2013

MAKALAH BIOGAS


     MAKALAH BIOGAS

BAB I 
PENDAHULUAN 

1.1.       Latar Belakang 
Beberapa tahun terakhir ini energi merupakan persoalan yang krusial didunia. Peningkatan permintaan energi yang disebabkan oleh pertumbuhan populasi penduduk dan menipisnya sumber cadangan minyak dunia serta permasalahan emisi dari bahan bakar fosil memberikan tekanan kepada setiap negara untuk segera memproduksi dan menggunakan energi terbaharukan. Selain itu, peningkatan harga minyak dunia hingga mencapai 100 U$ per barel juga menjadi alasan yang serius yang menimpa banyak negara di dunia terutama Indonesia. 
Lonjakan harga minyak dunia akan memberikan dampak yang besar bagi pembangunan bangsa Indonesia. Konsumsi BBM yang mencapai 1,3 juta/barel tidak seimbang dengan produksinya yang nilainya sekitar 1 juta/barel sehingga terdapat defisit yang harus dipenuhi melalui impor. Menurut data ESDM (2006) cadangan minyak Indonesia hanya tersisa sekitar 9 milliar barel. Apabila terus dikonsumsi tanpa ditemukannya cadangan minyak baru, diperkirakan cadangan minyak ini akan habis dalam dua dekade mendatang. 
Untuk mengurangi ketergantungan terhadap bahan bakar minyak pemerintah telah menerbitkan Peraturan presiden republik Indonesia nomor 5 tahun 2006 tentang kebijakan energi nasional untuk mengembangkan sumber energi alternatif sebagai pengganti bahan bakar minyak. Kebijakan tersebut menekankan pada sumber daya yang dapat diperbaharui sebagai altenatif pengganti bahan bakar minyak 
Salah satu sumber energi alternatif adalah biogas. Gas ini berasal dari berbagai macam limbah organik seperti sampah biomassa, kotoran manusia, kotoran hewan dapat dimanfaatkan menjadi energi melalui proses anaerobik digestion. Proses ini merupakan peluang besar untuk menghasilkan energi alternatif sehingga akanmengurangi dampak penggunaan bahan bakar fosil.
1.2.       Rumusan Masalah 
1.      Apa yang dimaksud dengan Biogas ?
2.      Bagaimana sejarah Biogas ? 
3.      Bahan-bahan yang digunakan dalam Biogas ?
4.      Kandungan apa saja yang terdapat di dalam Biogas ? 
5.      Reaktor apa saja yang ada di dalam Biogas ? 

1.3.       Tujuan Penulisan
Tujuan kami melakukan penulisan  ini adalah untuk mengetahui manfaat dari pemakaian bahan Biogas yaitu Biogas lebih hemat dibandingkan dengan pemakaian BBM yang semakin langka. 

1.4.       Manfaat Penulisan
Manfaat dari penulisan kami adalah memberikan informasi kepada masyarakat bahwa pemakaian Biogas lebih praktis dan terjangkau dibanding dengan pemakaian BBM. Selain itu pemakaian Biogas ramah lingkungan dan tidak menimbulkan polusi serta pemakaian pada BBM. 



BAB II 
PEMBAHASAN 

2.1.    Pengertian Biogas

Biogas merupakan sebuah proses produksi gas bio dari material organik dengan bantuan bakteri. Proses degradasi material organik ini tanpa melibatkan oksigen disebut anaerobik digestion Gas yang dihasilkan sebagian besar (lebih 50 % ) berupa metana. material organik yang terkumpul pada digester (reaktor) akan diuraiakan menjadi dua tahap dengan bantuan dua jenis bakteri. Tahap pertama material orgranik akan didegradasi menjadi asam asam lemah dengan bantuan bakteri pembentuk asam. Bakteri ini akan menguraikan sampah pada tingkat hidrolisis dan asidifikasi. Hidrolisis yaitu penguraian senyawa kompleks atau senyawa rantai panjang seperti lemak, protein, karbohidrat menjadi senyawa yang sederhana. Sedangkan asifdifikasi yaitu pembentukan asam dari senyawa sederhana. 
Setelah material organik berubah menjadi asam asam, maka tahap kedua dari proses anaerobik digestion adalah pembentukan gas metana dengan bantuan bakteri pembentuk metana seperti methanococus, methanosarcina, methano bacterium. 
Perkembangan proses Anaerobik digestion telah berhasil pada banyak aplikasi. Proses ini memiliki kemampuan untuk mengolah sampah / limbah yang keberadaanya melimpah dan tidak bermanfaat menjadi produk yang lebih bernilai. Aplikasi anaerobik digestion telah berhasil pada pengolahan limbah industri, limbah pertanian limbah peternakan dan municipal solid waste (MSW). 

2.2.    Sejarah Biogas 

Sejarah penemuan proses anaerobik digestion untuk menghasilkan biogas tersebar di benua Eropa. Penemuan ilmuwan Volta terhadap gas yang dikeluarkan di rawa-rawa terjadi pada tahun 1770, beberapa dekade kemudian, Avogadro mengidentifikasikan tentang gas metana. Setelah tahun 1875 dipastikan bahwa biogas merupakan produk dari proses anaerobik digestion. Tahun 1884 Pasteour melakukan penelitian tentang biogas menggunakan kotoran hewan. Era penelitian Pasteour menjadi landasan untuk penelitian biogas hingga saat ini. 

2.3.    Komposisi Biogas 

Biogas sebagian besar mengandung gs metana (CH4) dan karbon dioksida (CO2), dan beberapa kandungan yang jumlahnya kecil diantaranya hydrogen sulfida (H2S) dan ammonia (NH3) serta hydrogen dan (H2), nitrogen yang kandungannya sangat kecil. 
Energi yang terkandung dalam biogas tergantung dari konsentrasi metana (CH4). Semakin tinggi kandungan metana maka semakin besar kandungan energi (nilai kalor) pada biogas, dan sebaliknya semakin kecil kandungan metana semakin kecil nilai kalor. Kualitas biogas dapat ditingkatkan dengan memperlakukan beberapa parameter yaitu : Menghilangkan hidrogen sulphur, kandungan air dan karbon dioksida (CO2). Hidrogen sulphur mengandung racun dan zat yang menyebabkan korosi, bila biogas mengandung senyawa ini maka akan menyebabkan gas yang berbahaya sehingga konsentrasi yang di ijinkan maksimal 5 ppm. Bila gas dibakar maka hidrogen sulphur akan lebih berbahaya karena akan membentuk senyawa baru bersama-sama oksigen, yaitu sulphur dioksida /sulphur trioksida (SO2 / SO3). 

senyawa ini lebih beracun. Pada saat yang sama akan membentuk Sulphur acid (H2SO3) suatu senyawa yang lebih korosif. Parameter yang kedua adalah menghilangkan kandungan karbon dioksida yang memiliki tujuan untuk meningkatkan kualitas, sehingga gas dapat digunakan untuk bahan bakar kendaraan. Kandungan air dalam biogas akan menurunkan titik penyalaan biogas serta dapat menimbukan korosif 

2.4.    Reaktor Biogas 

Ada beberapa jenis reactor biogas yang dikembangkan diantaranya adalah reactor jenis kubah tetap (Fixed-dome), reactor terapung (Floating drum), raktor jenis balon, jenis horizontal, jenis lubang tanah, jenis ferrocement. Dari keenam jenis digester biogas yang sering digunakan adalah jenis kubah tetap (Fixed-dome) dan jenis Drum mengambang (Floating drum). Beberapa tahun terakhi ini dikembangkan jenis reactor balon yang banyak digunakan sebagai reactor sedehana dalam skala kecil.

1. Reaktor kubah tetap (Fixed-dome) 

Reaktor ini disebut juga reaktor china. Dinamakan demikian karena reaktor ini dibuat pertama kali di chini sekitar tahun 1930 an, kemudian sejak saat itu reaktor ini berkembang dengan berbagai model. Pada reaktor ini memiliki dua bagian yaitu digester sebagai tempat pencerna material biogas dan sebagai rumah bagi bakteri,baik bakteri pembentuk asam ataupun bakteri pembentu gas metana. bagian ini dapat dibuat dengan kedalaman tertentu menggunakan batu, batu bata atau beton. Strukturnya harus kuat karna menahan gas aga tidak terjadi kebocoran. Bagian yang kedua adalah kubah tetap (fixed-dome). Dinamakan kubah tetap karena bentunknya menyerupai kubah dan bagian ini merupakan pengumpul gas yang tidak bergerak (fixed). Gas yang dihasilkan dari material organik pada digester akan mengalir dan disimpan di bagian kubah. 
Keuntungan dari reaktor ini adalah biaya konstruksi lebih murah daripada menggunaka reaktor terapung, karena tidak memiliki bagian yang bergerak menggunakan besi yang tentunya harganya relatif lebih mahal dan perawatannya lebih mudah. Sedangkan kerugian dari reaktor ini adalah seringnya terjadi kehilangan gas pada bagian kubah karena konstruksi tetapnya. 


2. Reaktor floating drum 

Reaktor jenis terapung pertama kali dikembangkan di india pada tahun 1937 sehingga dinamakan dengan reaktor India. Memiliki bagian digester yang sama dengan reaktor kubah, perbedaannya terletak pada bagian penampung gas menggunakan peralatan bergerak menggunakan drum. Drum ini dapat bergerak naik turun yang berfungsi untuk menyimpan gas hasil fermentasi dalam digester. Pergerakan drum mengapung pada cairan dan tergantung dari jumlah gas yang dihasilkan. 
Keuntungan dari reaktor ini adalah dapat melihat secara langsung volume gas yang tersimpan pada drum karena pergerakannya. Karena tempat penyimpanan yang terapung sehingga tekanan gas konstan. Sedangkan kerugiannya adalah biaya material konstruksi dari drum lebih mahal. faktor korosi pada drum juga menjadi masalah sehingga bagian pengumpul gas pada reaktor ini memiliki umur yang lebih pendek dibandingkan menggunakan tipe kubah tetap. 


3. Reaktor balon 

Reaktor balon merupakan jenis reaktor yang banyak digunakan pada skala rumah tangga yang menggunakan bahan plastik sehingga lebih efisien dalam penanganan dan perubahan tempat biogas. reaktor ini terdiri dari satu bagian yang berfungsi sebagai digester dan penyimpan gas masing masing bercampur dalam satu ruangan tanpa sekat. Material organik terletak dibagian bawah karena memiliki berat yang lebih besar dibandingkan gas yang akan mengisi pada rongga atas. 

2.5.    Konservasi Energi 

Konversi limbah melalui proses anaerobik digestion dengan menghasilkan biogas memiliki beberapa keuntungan, yaitu : 
  • biogas merupakan energi tanpa menggunakan material yang masih memiliki manfaat termasuk biomassa sehingga biogas tidak merusak keseimbangan karbondioksida yang diakibatkan oleh penggundulan hutan (deforestation) dan perusakan tanah. 
  • Energi biogas dapat berfungsi sebagai energi pengganti bahan bakar fosil sehingga akan menurunkan gas rumah kaca di atmosfer dan emisi lainnya. 
  • Metana merupakan salah satu gas rumah kaca yang keberadaannya duatmosfer akan meningkatkan temperatur, dengan menggunakan biogas sebagai bahan bakar maka akan mengurangi gas metana di udara. 
  • Limbah berupa sampah kotoran hewan dan manusia merupakan material yang tidak bermanfaaat, bahkan bisa menngakibatkan racun yang sangat berbahaya. Aplikasi anaerobik digestion akan meminimalkan efek tersebut dan meningkatkan nilai manfaat dari limbah.

  • Selain keuntungan energy yang didapat dari proses anaerobik digestion dengan menghasilkan gas bio, produk samping seperti sludge. Meterial ini diperoleh dari sisa proses anaerobik digestion yang berupa padat dan cair. Masing-masing dapat digunakan sebagai pupuk berupa pupuk cair dan pupuk padat. 

BAB III 
PEMBUATAN BIOGAS
(METODE, ALAT DAN BAHAN)



Skema biogas


Proses pemanfaatan biogas


3.1.    Metode Pembuatan Biogas
Proses penguraian oleh mikroorganisme untuk menguraikan bahan-bahan organik terjadi secara anaerob. Proses anaerob adalah proses biologi yang berlangsung pada kondisi tanpa oksigen oleh mikroorganisme tertentu yang mampu mengubah senyawa organik menjadi metana (biogas). Proses ini banyak dikembangkan untuk mengolah kotoran hewan dan manusia atau air limbah yang kandungan bahan organiknya tinggi. Sisa pengolahan bahan organik dalam bentuk padat digunakan untuk kompos.

Secara umum, proses anaeorob terdiri dari empat tahap yakni: hidrolisis, pembentukan asam, pembentukan asetat dan pembentukan metana. Proses anaerob dikendalikan oleh dua golongan mikroorganisme (hidrolitik dan metanogen). Bakteri hidrolitik memecah senyawa organik kompleks menjadi senyawa yang lebih sederhana. Senyawa sederhana diuraikan oleh bakteri penghasil asam (acid-forming bacteria) menjadi asam lemak dengan berat molekul rendah seperti asam asetat dan asam butirat. Selanjutnya bakteri metanogenik mengubah asam-asam tersebut menjadi metana.

Instalasi sistem produksi dan pemanfaatan biogas

3.2.       Alat
Cara membuat alat sebagai berikut :
a.       Tabung Produksi
Dua drum (200 liter) dibuka salah satu sisinya, dengan sebuah drum yang dibuka separo (0,5 diameter). Kemudian sisi yang terbuka penuh dan sisi yang terbuka sebagian tersebut disambungkan. Pada sisi drum yang lain dibuat lubang masing-masing dengan diameter 5 cm . Satu lubang dihubungkan dengan pipa pemasukan, dan lubang yang lain dengan pipa pembuangan (masing-masing pipa berdiameter 5 cm). Dan perkuat tiap-tiap pipa tersebut dengan sebuh penopang. Usahakan ketinggian pipa pemasukan dengan sebuah corong, untuk mempermudah proses pengisian, agar tidak terguling (menggelinding) , sebaiknya tabung produksi diberi kaki penyangga, usahakan posisi kedua pipa tegak keatas. Pada sisi atas tabung dibuat lubang dengan diameter 1,25 cm dan disambungkan dengan pipa seukuran yang sudah dipasang kran. Tabung produksi sudah jadi dan bisa dihubungkan dengan tabung penyimpanan dengan selang melalui kran.
b.      Tabung penyimpan
Buka salah satu sisi drum (120 liter dan 200 liter). Untuk drum kecil (120 Lt) pada sisi yang lain dibuat 2 lubang berdiameter 1,25 cm, satu lubang untuk pemasukan gas dan yang lain untuk pengeluaran. Sambungkan kedua lubang tersebut dengan pipa seukuran, dan untuk pipa pengeluaran pasang kran. Letakkan drum besar dengan sisi terbuka menghadap keatas,lalu masukkan drum kecil dengan posisi terbalik. Tabung penyimpanan sudah jadi dan bisa diisi dengan air. Yang perlu diperhatikan dalam pembuatan alat adalah kekedapannya, jadi sebelum alat degunakan sebaiknya diuji drlr kekegapannya, kalau ada yang bocor harus ditambal atau diganti
3.3.      Bahan
Biogas berasal dari hasil fermentasi bahan-bahan organik diantaranya:
  • Limbah tanaman : tebu, rumput-rumputan, jagung, gandum, dan lain-lain,
  • Limbah dan hasil produksi : minyak, bagas, penggilingan padi, limbah sagu,
  • Hasil samping industri : tembakau, limbah pengolahan buah-buahan dan sayuran, dedak, kain dari tekstil, ampas tebu dari industri gula dan tapioka, limbah cair industri tahu,
  • Limbah perairan : alga laut, tumbuh-tumbuhan air,
  • Limbah peternakan : kotoran sapi, kotoran kerbau, kotoran kambing, kotoran unggas.
3.4.      Proses Pembuatan Biogas yang Berasal dari Kotoran Ternak

Berikut adalah proses pembuatan biogas dari kotoran ternak.
1.        Yang pertama dilakukan adalah menyediakan wadah atau bejana untuk mengolah kotoran organik menjadi biogas. Kalau hanya diperuntukkan secara pribadi, cukup menggunakan bak yang terbuat dari semen yang cukup lebar atau drum bekas yang masih cukup kuat. Selain itu perlunya kesediaan kotoran hewan (baik sapi maupun kambing) yang merupakan bahan baku biogas. Kalau sulit mencari kotoran hewan, maka percuma aja. Untuk itu diperlukan survey terlebih dahulu. Atau kalau mau sedikit niat, septik tank bisa dimanfaatkan seperti yang dilakukan di India.
2.        Proses kedua adalah mencampurkan kotoran organik tersebut dengan air. Biasanya campuran antara kotoran dan air menggunakan perbandingan 1:1 atau bisa juga menggunakan perbandingan 1:1,5. Air berperan sangat penting di dalam proses biologis pembuatan biogas. Artinya jangan terlalu banyak (berlebihan) juga jangan terlalu sedikit (kekurangan).
3.        Temperatur selama proses berlangsung, karena ini menyangkut "kesenangan" hidup bakteri pemroses biogas antara 27 - 28 derajat celcius. Dengan temperatur itu proses pembuatan biogas akan berjalan sesuai dengan waktunya. Tetapi berbeda kalau nilai temperatur terlalu rendah (dingin), maka waktu untuk menjadi biogas akan lebih lama.
4.        Kehadiran jasad pemroses, atau jasad yang mempunyai kemampuan untuk menguraikan bahan-bahan yang akhirnya membentuk CH4 (gas metan) dan CO2. Dalam kotoran kandang, lumpur selokan ataupun sampah dan jerami, serta bahan-bahan buangan lainnya, banyak jasad renik, baik bakteri ataupun jamur pengurai bahan-bahan tersebut didapatkan. Tapi yang menjadi masalah adalah hasil uraiannya belum tentu menjadi CH4 yang diharapkan serta mempunyai kemampuan sebagai bahan bakar.
5.        Untuk mendapatkan biogas yang diinginkan, bak penampung (bejana) kotoran organik harus bersifat anaerobik. Dengan kata lain, tangki itu tak boleh ada oksigen dan udara yang masuk sehingga sampah-sampah organik yang dimasukkan ke dalam bioreaktor bisa dikonversi mikroba. Keberadaan udara menyebabkan gas CH4 tidak akan terbentuk. Untuk itu maka bejana pembuat biogas harus dalam keadaan tertutup rapat.
6.        Setelah proses ini selesai, maka selama dalam kurun waktu 1 minggu didiamkan, maka gas metan sudah terbentuk dan siap dialirkan untuk keperluan memasak. Namun ada beberapa hal yang harus diperhatikan dalam memanfaatkan biogas. Seperti misalnya sifat biogas yang tidak berwarna, tidak berbau dan sangat cepat menyala. Karenanya kalau lampu atau kompor mempunyai kebocoran, akan sulit diketahui secepatnya. Berbeda dengan sifat gas lainnya, sepeti elpiji, maka karena berbau akan cepat dapat diketahui kalau terjadi kebocoran pada alat yang digunakan. Sifat cepat menyala biogas, juga merupakan masalah tersendiri.
3.5.       Faktor-Faktor yang Mempengaruhi Proses Pembuatan Biogas
Laju proses anaerob yang tinggi sangat ditentukan oleh faktor-faktor yang mempengaruhi mikroorganisme, diantaranya temperatur, pH, salinitas dan ion kuat, nutrisi, inhibisi dan kadar keracunan pada proses, dan konsentrasi padatan. Berikut ini adalah pembahasan tentang faktor-faktor tersebut.
1.      Temperatur
Gabungan bakteri anaerob bekerja dibawah tiga kelompok temperatur utama. Temperatur kriofilik yakni kurang dari 20 C, mesofilik berlangsung pada temperatur 20-45 C (optimum pada 30-45) dan termofilik terjadi pada temperatur 40-80 C (optimum pada 55-75 C).
2.      Derajat keasaman ( pH )
Pada dekomposisi anaerob faktor pH sangat berperan, karena pada rentang pH yang tidak sesuai, mikroba tidak dapat tumbuh dengan maksimum dan bahkan dapat menyebabkan kematian yang pada akhirnya dapat menghambat perolehan gas metana. Bakteri-bakteri anaerob membutuhkan pH optimal antara 6,2 – 7,6, tetapi yang baik adalah 6,6 – 7,5. Pada awalnya media mempunyai pH ± 6 selanjutnya naik sampai 7,5. Tangki pencerna dapat dikatakan stabil apabila larutannya mempunyai pH 7,5 – 8,5. Batas bawah pH adalah 6,2, dibawah pH tersebut larutan sudah toxic, maksudnya bakteri pembentuk biogas tidak aktif. Pengontrolan pH secara alamiah dilakukan oleh ion NH4+ dan HCO3-. Ion-ion ini akan menentukan besarnya pH (Yunus, 1991).
3.      Nutrisi
Mikroorganisme membutuhkan beberapa vitamin esensial dan asam amino. Zat tersebut dapat disuplai ke media kultur dengan memberikan nutrisi tertentu untuk pertumbuhan dan metabolismenya. Selain itu juga dibutuhkan mikronutrien untuk meningkatkan aktivitas mikroorganisme, misalnya besi, magnesium, kalsium, natrium, barium, selenium, kobalt dan lain-lain (Malina,1992). Bakteri anaerobik membutuhkan nutrisi sebagai sumber energi yang mengandung nitrogen, fosfor, magnesium, sodium, mangan, kalsium dan kobalt (Space and McCarthy didalam Gunerson and Stuckey, 1986). Level nutrisi harus sekurangnya lebih dari konsentrasi optimum yang dibutuhkan oleh bakteri metanogenik, karena apabila terjadi kekurangan nutrisi akan menjadi penghambat bagi pertumbuhan bakteri. Penambahan nutrisi dengan bahan yang sederhana seperti glukosa, buangan industri, dan sisa sisa tanaman terkadang diberikan dengan tujuan menambah pertumbuhan di dalam digester (Gunerson and Stuckey, 1986).

4.      Keracunan dan Hambatan
Keracunan (toxicity) dan hambatan (inhibition) proses anaerob dapat disebabkan oleh berbagai hal, misalnya produk antara asam lemak mudah menguap (volatile) yang dapat mempengaruhi pH. Zat-zat penghambat lain terhadap aktivitas mikroorganisme pada proses anaerob diantaranya kandungan logam berat sianida.
5.      Faktor Konsentrasi Padatan
Konsentrasi ideal padatan untuk memproduksi biogas adalah 7-9% kandungan kering. Kondisi ini dapat membuat proses digester anaerob berjalan dengan baik.
6.      Penentuan Kadar Metana Dengan BMP
Uji BMP (Biochemical Methane Potential) ditunjukan untuk mengukur gas metana yang dihasilkan selama masa inkubasi secara anaerob pada media kimia. Uji BMP dilakukan dengan cara menempatkan cairan contoh, inokulan (biakan bakteri anaeorob) dan media kimia dalam botol serum. Botol serum ini, diinkubasi pada suhu 35oC, lalu pengukuran dilakukan selama masa inkubasi secara periodik (biasanya setiap 5 hari), sehingga pada akhir masa inkubasi (hari ke-30) didapatkan akumulasi gas metana. Pengukuran dilakukan dengan memasukkan jarum suntik (metoda syringe) ke botol serum.
7.      Rasio Carbon Nitrogen (C/N)
Proses anaerobik akan optimal bila diberikan bahan makanan yang mengandung karbon dan nitrogen secara bersamaan. CN ratio menunjukkan perbandingan jumlah dari kedua elemen tersebut. Pada bahan yang memiliki jumlah karbon 15 kali dari jumlah nitrogen akan memiliki C/N ratio 15 berbanding 1. C/N ratio dengan nilai 30 (C/N = 30/1 atau karbon 30 kali dari jumlah nitrogen) akan menciptakan proses pencernaan pada tingkat yang optimum, bila kondisi yang lain juga mendukung. Bila terlalu banyak karbon, nitrogen akan habis terlebih dahulu. Hal ini akan menyebabkan proses berjalan dengan lambat. Bila nitrogen terlalu banyak (C/N ratio rendah; misalnya 30/15), maka karbon habis lebih dulu dan proses fermentasi berhenti Sebuah penelitian menunjukkan bahwa aktivitas metabolisme dari bakteri methanogenik akan optimal pada nilai rasio C/N sekitar 8-20. (Anonymous, 1999a).
8.      Kandungan Padatan dan Pencampuran Substrat
Menurut Anonymous (1999a), walaupun tidak ada informasi yang pasti, mobilitas bakteri metanogen di dalam bahan secara berangsur – angsur dihalangi oleh peningkatan kandungan padatan yang berakibat terhambatnya pembentukan biogas. Selain itu yang terpenting untuk proses fermentasi yang baik diperlukan pencampuran bahan yang baik akan menjamin proses fermentasi yang stabil di dalam pencerna. Hal yang paling penting dalam pencampuran bahan adalah menghilangkan unsur – unsur hasil metabolisme berupa gas (metabolites) yang dihasilkan oleh bakteri metanogen, mencampurkan bahan segar dengan populasi bakteri agar proses fermentasi merata, menyeragamkan temperatur di seluruh bagian pencerna, menyeragamkan kerapatan sebaran populasi bakteri, dan mencegah ruang kosong pada campuran bahan.
Ada dua macam Biogas yang dikenal saat ini, yaitu Biogas (yang juga sering disebut gas rawa) dan Biosyngas. Perbedaan mendasar dari kedua bahan diatas adalah cara pembuatannya.
Biogas dihasilkan dari proses fermentasi bahan-bahan organik dengan bantuan bakteri anaerob pada lingkungan tanpa oksigen bebas. Energi biogas didominasi oleh Komposisi biogas terdiri atas metana (CH4) 55-75%, Karbon dioksida (CO2) 25-45%, Nitrogen (N2) 0-0.3%, Hidrogen (H2) 1-5%, Hidrogen sulfide (H2S) 0-3%, Oksigen (O2) 0.1-0.5%. Nilai kalori dari 1 meter kubik Biogas sekitar 6.000 watt jam yang setara dengan setengah liter minyak diesel.
Biosyngas (atau lebih sering disingkat Syngas atau Producer Gas) adalah produk antara (intermediate) yang dibuat melalui proses gasifikasi termokimia dimana pada suhu tinggi material kaya karbon seperti batubara, minyak bumi, gas alam atau biomassa dirubah menjadi Karbon monoksida (CO) dan Hidrogen (H2). Apabila bahan bakunya batubara, minyak bumi dan gas alam, maka disebut Syngas, sedangkan jika bahan bakunya biomassa maka disebut Biosyngas. Biosyngas dapat digunakan langsung menjadi bahan bakar atau sebagai bahan baku untuk proses kimia lainnya. Kandungan energi biosyngas kurang lebih 3 – 8 MJ/N.m3 (mega joules per normal meter kubik), tetapi dapat mencapai 10 – 20 NJ/N.m3 jika menggunakan oksigen murni digunakan dalam proses gasifikasi. Jika dalam proses gasifiksi ditambahkan uap/steam, yang disebut “reforming”, gas yang dihasilkan akan mengandung hidrogen (H2) dalam konsentrasi tinggi.

Gambar Proses sederhana gasifikasi untuk memproduksi biosyngas.

3.6.    Hasil Pembahasan

Setelah kami selesai melakukan penelitian kami mendapatkan informasi tentang Biogas bahwa Biogas memiliki unsur keuntungan seperti : 
a.              Sebagai alternatif pengganti bahan bakar BBM. 
b.             Dalam kebutuhan rumah tangga atau kebutuhan sehari-hari Biogas sangat hemat. 
c.              Biogas tidak menimbulkan polusi udara. 
d.             Sudah beberapa kendaraan yang telah menggunakan Biogas. 

BAB IV 
PENUTUP
4.1.    Kesimpulan 

Harga bahan bakar minyak yang makin meningkat dan ketersediaannya yang makin menipis serta permasalahan emisi gas rumah kaca merupakan masalah yang dihadapi oleh masyarakat global. Upaya pencarian akan bahan bakar yang lebih ramah terhadap lingkungan dan dapat diperbaharui merupakan solusi dari permasalahan energi tersebut. Untuk itu indonesia yang memiliki potensi luas wilayah yang begitu besar, diharapkan untuk segera mengaplikasi bahan bakar nabati. Biogas merupakan gas yang dihasilkan dari proses anaerobik digestion dan memiliki prosepek sebagai energi pengganti bahan bakar fosil yang keberadaaanya makin 

4.2.    Saran 

Berhubung ketersediaannya Minyak Bumi semakin menipis di Negara kita maka untuk itu kami menghimbau kepada seluruh masyarakat Indonesia agar menggunakan Biogas untuk sebagai alternatif pengganti bahan bakar dan pemerintah harus menegaskan dalam proses penggunaan Biogas dalam kehidupan sehari-hari.



DAFTAR PUSTAKA

·      The Gau’ : http//www.muhsakirmsg.blogspot.com/

20 komentar:

Silahkan Tinggalkan Komentar Untuk Perbaikan Postingan Selanjutnya !

Facebook Twitter Fans Page
Gratis Berlangganan artikel B-digg via mail, join sekarang!